MAME, formerly was an acronym which stood for Multi Arcade Machine Emulator, documents and reproduces through emulation the inner components of arcade machines, computers, consoles, chess computers, calculators, and many other types of electronic amusement machines. As a nice side-effect, MAME allows to use on a modern PC those programs and games which were originally developed for the emulated machines.
At one point there were actually two separate projects, MAME and MESS. MAME covered arcade machines, while MESS covered everything else. They are now merged into the one MAME.
MAME is mostly programmed in C with some core components in C++. MAME can currently emulate over 32000 individual systems from the last 5 decades.
The primary purpose of MAME is to preserve decades of arcade, computer, and console history. As technology continues to rush forward, MAME prevents these important “vintage” systems from being lost and forgotten.
ProjectMESS contains a complete list of the systems currently emulated. As you will notice, being supported does not always mean that the status of the emulation is perfect. You may want
Alternatively, you can simply see the status by yourself, launching the system emulation and taking a look to the red or yellow warning screen which appears before the emulation starts, if any. Notice that if you have information which can help to improve the emulation of a supported system, or if you can directly contribute fixes and/or addition to the current source, you can follow the instructions at the contact page or post to the MAME Forums at http://forum.mamedev.org/
The current source code can be directly compiled under all the main OSes: Microsoft Windows (both with DirectX/BGFX native support or with SDL support), Linux, FreeBSD, and Mac OS X. Also, both 32-bit and 64-bit are supported, but be aware 64-bit often shows significant speed increases.
MAME is written in fairly generic C/C++, and has been ported to numerous platforms. Over time, as computer hardware has evolved, the MAME code has evolved as well to take advantage of the greater processing power and hardware capabilities offered.
The official MAME binaries are compiled and designed to run on a standard Windows-based system. The minimum requirements are:
Of course, the minimum requirements are just that: minimal. You may not get optimal performance from such a system, but MAME should run. Modern versions of MAME require more power than older versions, so if you have a less-capable PC, you may find that using an older version of MAME may get you better performance, at the cost of greatly lowered accuracy and fewer supported systems.
MAME will take advantage of 3D hardware for compositing artwork and scaling the games to full screen. To make use of this, you should have a modern Direct3D 8-capable video card with at least 16MB of video RAM.
HLSL or GLSL special effects such as CRT simulation will put a very heavy load on your video card, especially at higher resolutions. You will need a fairly powerful modern video card, and the load on your video card goes up exponentially as your resolution increases. If HLSL or GLSL are too intensive, try dropping your output resolution.
Keep in mind that even on the fastest computers available, MAME is still incapable of playing some systems at full speed. The goal of the project isn’t to make all system run speedy on your system; the goal is to document the hardware and reproduce the behavior of the hardware as faithfully as possible.
Most of the systems emulated by MAME requires a dump of the internal chips of the original system. These can be obtained by extracting the data from an original unit, or finding them (at your own risk) in the WorldWideWeb. Also, you may want to find some software to be run on the emulated machine. Again, Google and other search engines are your best friends.